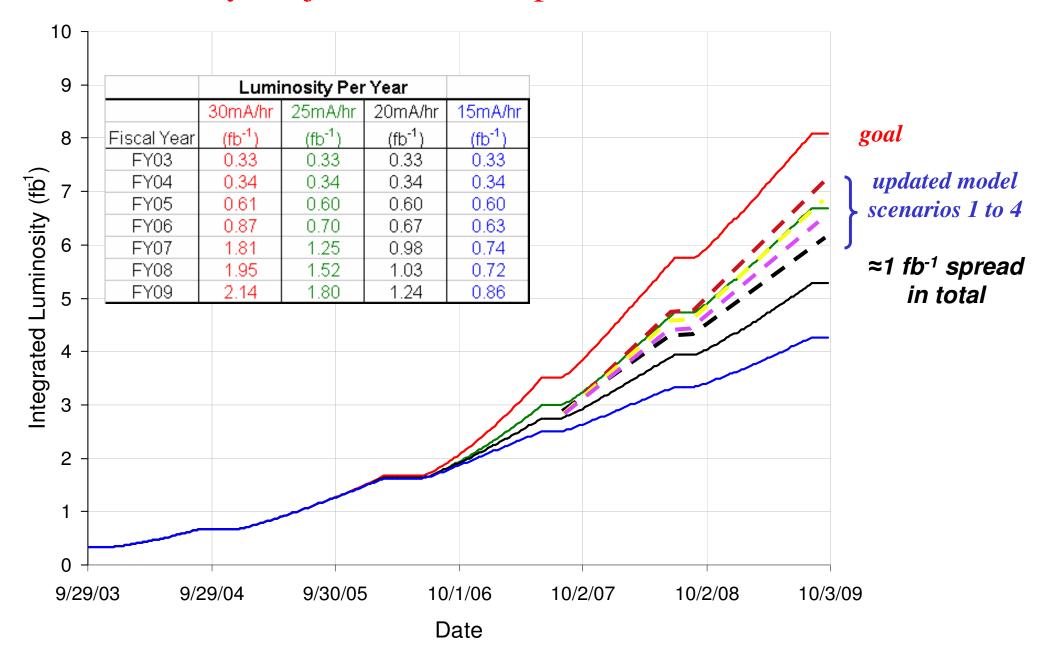
CDF & D0 Computing

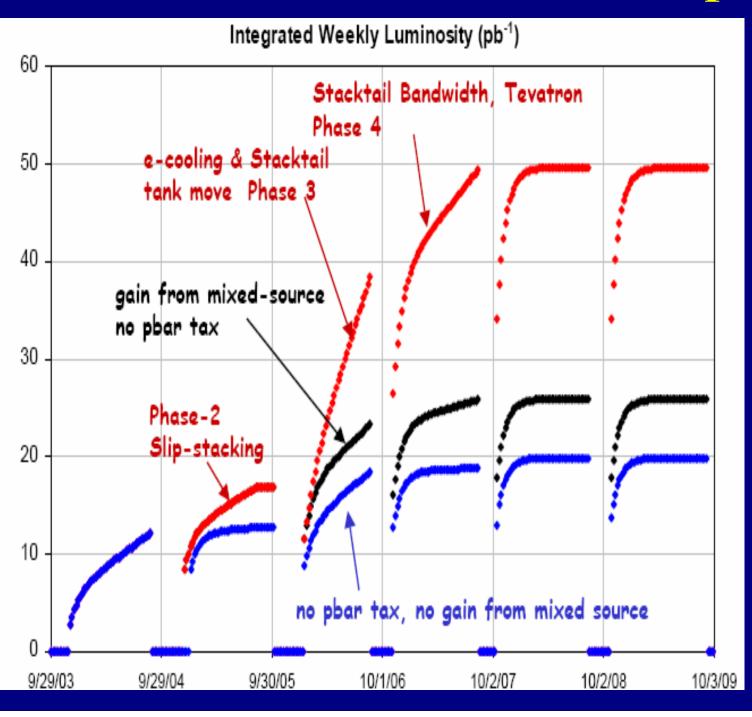

Version 0.22 4 / 9 / 2008

GP Yeh

Future Challenges

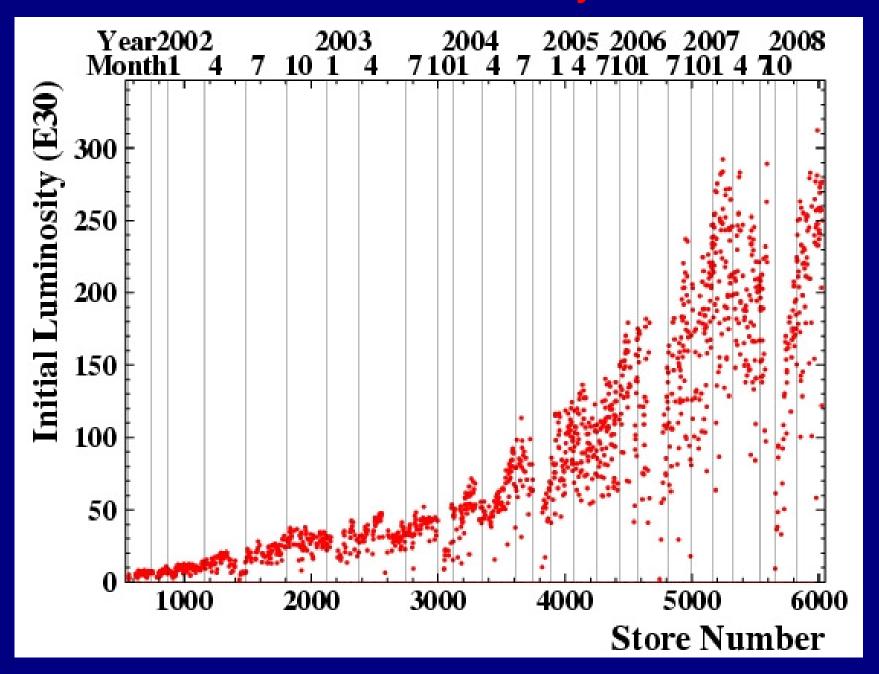
- Higher instantaneous luminosity
 - Larger events, slower reconstruction, tracking more difficult, need more CPU per event
- · Higher integrated luminosity and higher data taking rate
 - Larger data samples
 - Need more processing power
 - Need more storage
- Migration of physicists to LHC experiments
 - Human resources for operations are shrinking
- FY2010 Running has been proposed

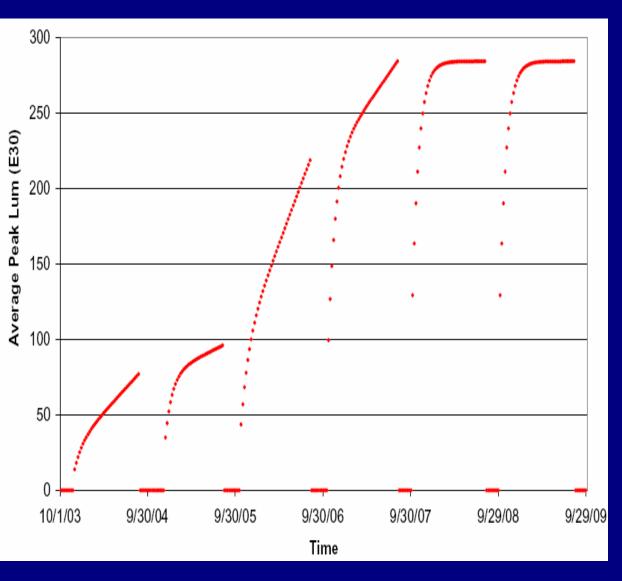
Luminosity Projections with Updated Model Scenarios

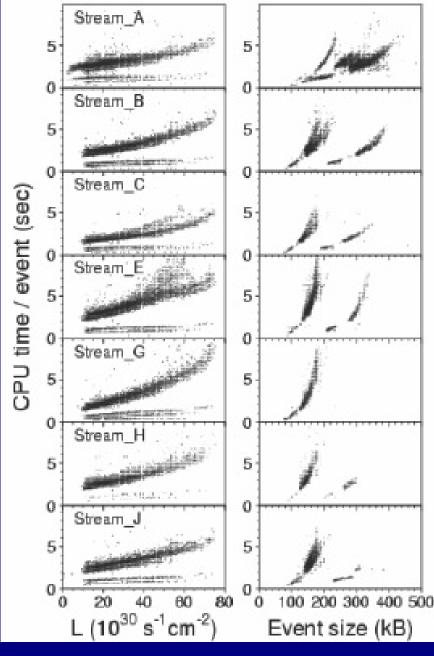


Integrated Luminosity

Tevatron

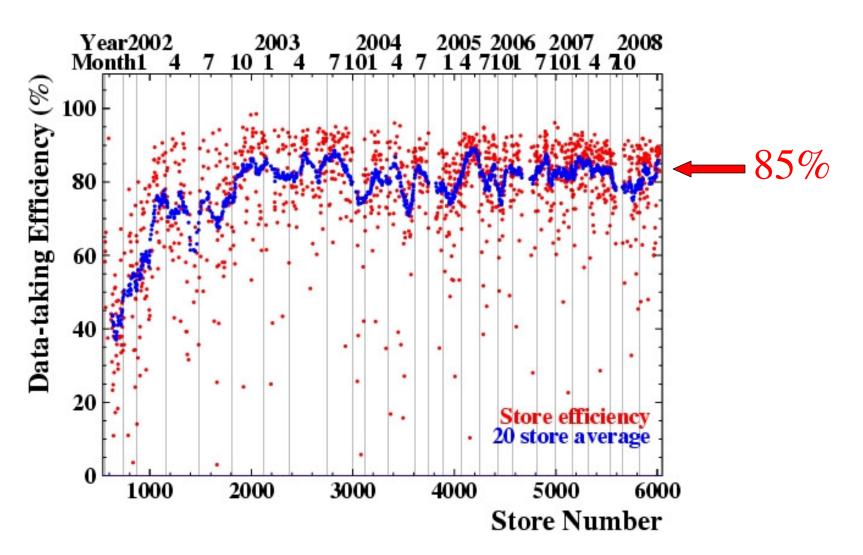

Future Operation


+ FY 2010 ?

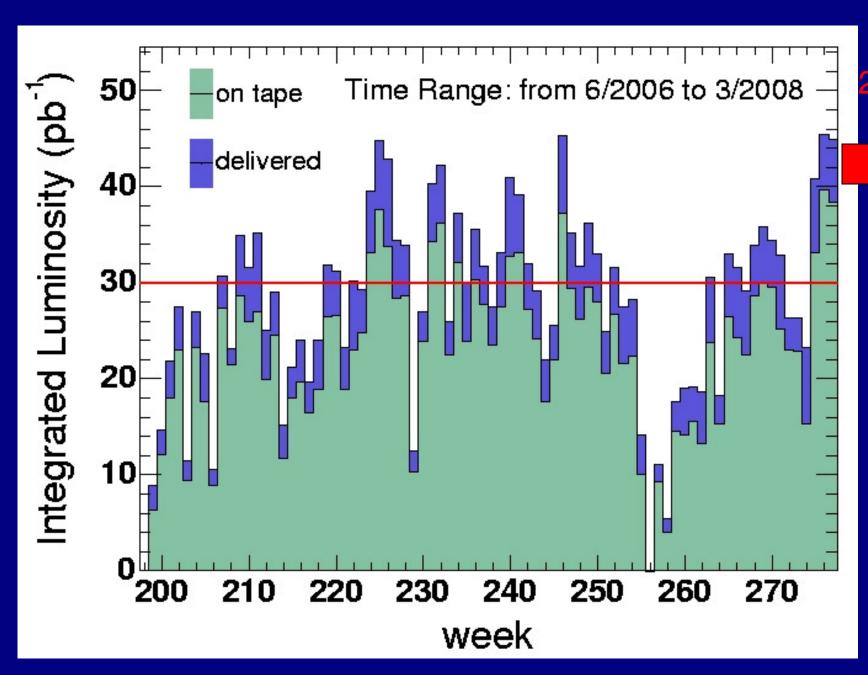

Still large factors to be gained over the next few years

Initial Luminosity

Challenge I: Higher Inst. Luminosities


CDF

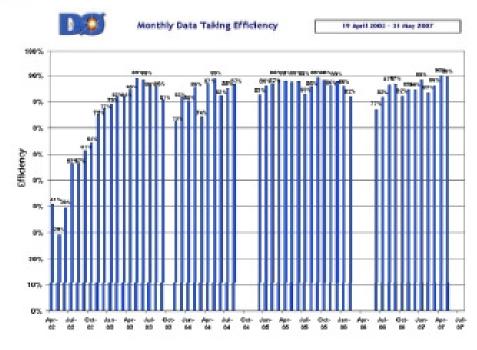
2003 2007


Level 1 trigger: $12 \text{ KHz} \Rightarrow 35 \text{ KHz}$

Level 2 trigger: $300 \text{ Hz} \implies 800 \text{ Hz}$

Level 3 trigger: $24 \text{ MB/s} \Rightarrow 100 \text{ MB/s}$

CDF weekly Integrated Luminosity



2008-2010

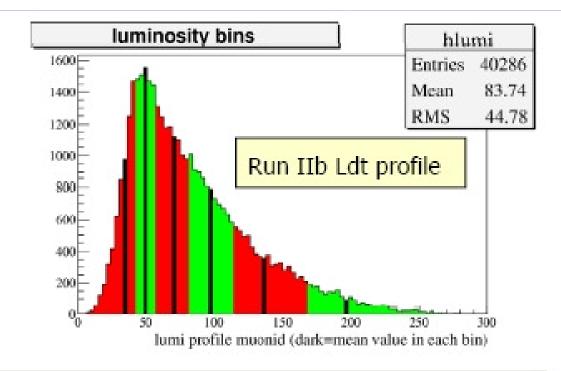
Operations

- The experiment is operating well and recording physics quality data
 - Typical "good" day 7 pb⁻¹
 - Typical "good" week 40 pb-1
 - Run I top quark discovery in a week!
- On average 85% data taking efficiency
 - 5% are trigger/readout system disables
 - 10% are begin/end stores, failures
- As of today DØ has ~2.5 fb⁻¹ on tapes
 - All detectors functioning well
 - Already reported physics results from early 2007 data

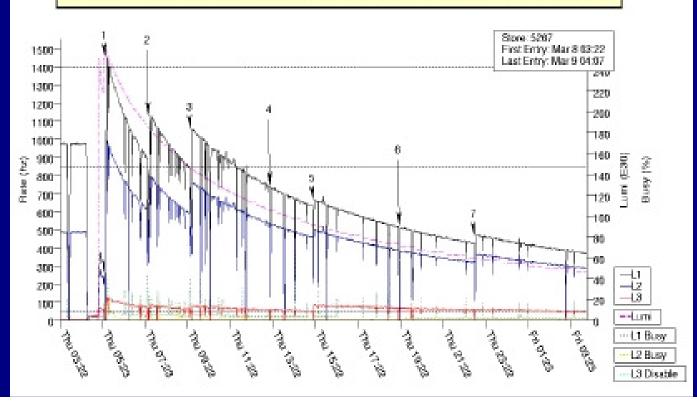
All of the above is due to the dedicated team of experts and shifters

This week celebrating delivery of 3.0 fb⁻¹ to the DØ experiment
Thanks to the Accelerator Division!

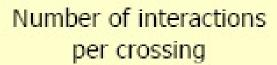
D0

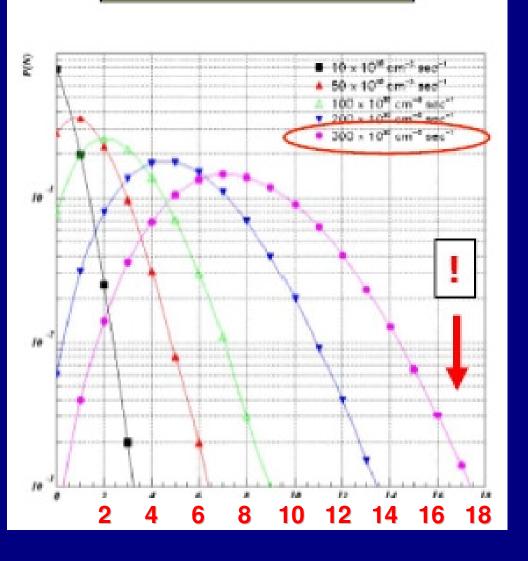

Trigger system selects ~100Hz of events to write to tape out of ~2 MHz interactions rate ~ 10⁵ rejection!

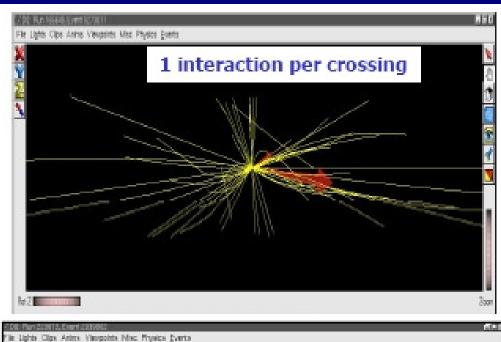
Current DØ capabilities

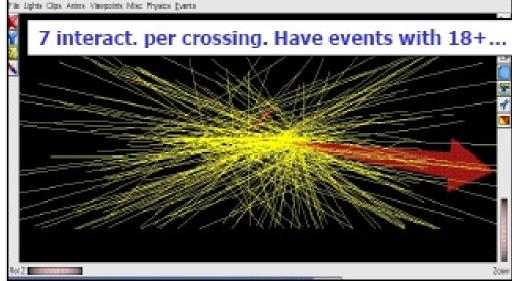

Level 1 trigger ~2kHz

Level 2 trigger ~1kHz


Level 3 trigger ~100Hz

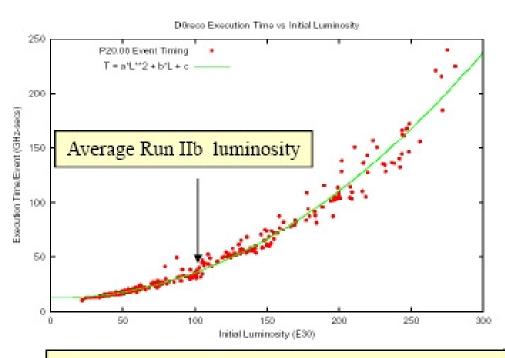


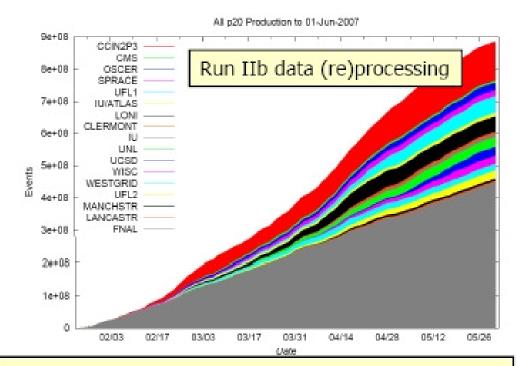

Level 1, 2 and 3 rates during typical Tevatron store



D0

Z → ee events




Data Processing

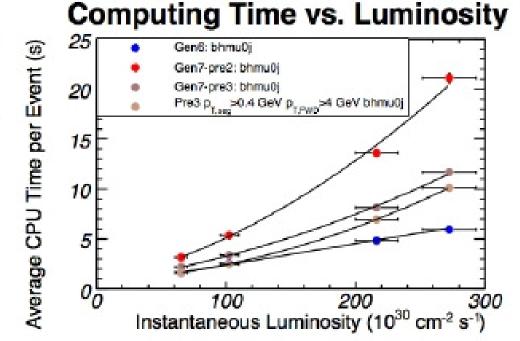
- DØ collected over 2 · 109 events in Run II
- Current reconstruction program (Version p20) is in use since summer 2006
 - New Run IIb detectors
 - Preliminary Run IIb calibration data
 - · Faster and more robust

For uniform and better quality data reprocessed Run IIb data collected before January 2007 Was accomplished on the GRID in ~4 months Have full Run IIb data set available for analysis

Reconstruction timing

- Major time consuming process is tracking due to small number of tracking layers and high occupancies
- Currently reconstructing on the Fermilab's DØ farms ~5mln events per day and writing to tapes about the same number
- Within weeks extra computing resources will become available doubling available CPU
 - Will have "head room" and ready for even higher luminosity operation

DØ SAM based computing model and use of the GRID resources is a success!


Computing Figure Ws Tuminosity

- Normalize luminosity curve to unit area in [50×10³⁰, 300×10³⁰] cm⁻² s⁻¹
- Parameterize CPU time curves with 2nd order polynomials
- Convolute the two curves: average CPU time per event

$$\langle t \rangle = \sum_{\text{lumi bins } i} t_i \cdot N_i \cdot \Delta \mathcal{L}_i$$

Results.

results.						
Release	Average Time (s)	Ratio to Gen6				
Gen6	2.72	1.00				
Gen7- pre2	6.69	2.46				
Gen7- pre3	4.12	1.52				
Gen7- pre3, FWD $p_T > 4$ GeV/ c	3.42	1.26				
Gen7- pre3, Segment $p_{\tau} > 0.5$ GeV/ c	3.33	1.23				
Gen7- pre3, FWD p_{τ} > 2, Seg p_{τ} > 0.43	3.26	1.20				

CDF & D0

 1.5×10^{7} seconds/yr = 42 weeks/yr, 100 hours/wk of beam Data taking efficiency 85%

	FY		80	09	10
Total Int. Luminosity fb ⁻¹	2.0	3.2	4.9	6.8	8.1?
Integrated Luminosity / yr	0.7	1.2	1.7	1.9	1.3?
pb ⁻¹ / wk delivered	16	28	50	50	50
pb ⁻¹ / wk recorded	14	24	42	42	42

Introduction: Some Numbers

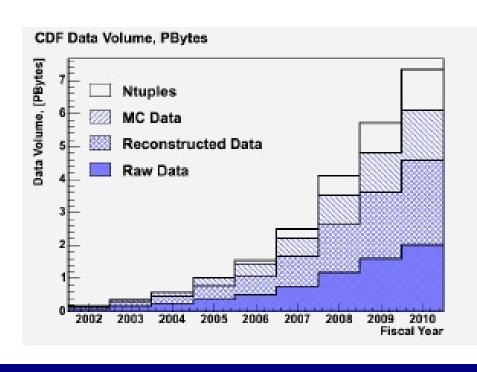
	CDF	D0
Raw data size* (Kbytes/event)	150	250-300
Reco data size (Kbytes/event)	120	200
User format (Kbytes/event)	25-180	20-40
Reco time** (GHz-sec/event)	5(10)	50(120)
User analysis time (GHz-sec/event)	1(3)	1
Peak data rate (Hz)	130(360)	50(100)

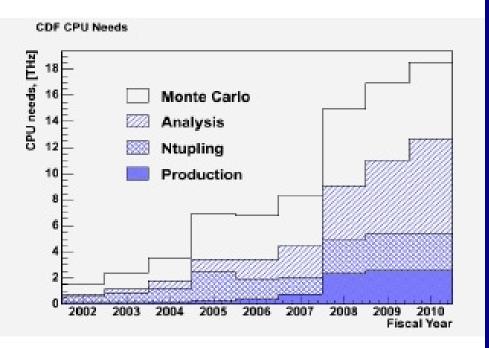
^{*}Raw event size depends upon trigger type and luminosity

^{**}Reconstruction time depends upon raw data size

D0 Vital Statistics

2006


DO Vital Statistics		
	1997(projections)	2006
Peak (Average) Data Rate(Hz)	50(20)	100(35)
Events Collected	600M/year	1.5 B
Raw Data Size (kbytes/event)	250	250
Reconstructed Data Size (kbytes/event)	100 (5)	80
User format (kbytes/event)	1	40
Tape storage	280 TB/year	1.6 pb on tape
Tape Reads/writes (weekly)		30TB/7TB
Analysis/cache disk	7TB/year	220 TB
Reconstruction Time (Ghz-sec/event)	2.00	50 (120)
Monte Carlo Chain	full Geant	full Geant
user analysis times (Ghz-sec/event)	?	1
user analysis weekly reads	?	3B events
Primary Reconstruction farm size (THz)	0.6	2.4 THz
Central Analysis farm size (GHz)	0.6	2.2 THz
Remote resources(GHz)	?	~ 2.5 THz(grid)


Amber Boehnlein HCP May, 2006

Challenge II: larger data samples

Computing model input parameters

Fiscal Year	2007	2008	2009	2010
Integrated luminosity (fb ⁻¹)	3.2	5.9 4.9	6.8	8.1
Total number of events (10°)	5.0	8.0	11	13
Raw data logging rate (MB/s)	17	30	30	30

R. Snider CDF IFC Oct. 30, 2007

Computing inventory

1.5×10^7 seconds/yr = 42 weeks/yr, 100 hours/wk of beam							
		17	tual	100-200	quireme	nts	
200	Fiscal Year	2007	2008	2008	2009	2010	
	Estimated requirement			15	17	18	
	Fermilab	7.9	9.6	10	11	12	
CPU (THz)	On-site contributions	1.7	1.7	1.7	1.7	1.7	
CPU (THZ)	Remote (dedicated)	1.6	1.6	1.6	2.3	2.3	
	Opportunistic	1.7	1.7	1.7	2.0	2.0	
	Total available	13	15				
	Estimated requirement			1.0	1.3	1.5	
Disk (PB)	Fermilab	0.7	1.0	0.98	1.2	1.4	
	On-site contributions	0.1	0.06	0.06	0.06	0.06	
	Remote	0.1?	0.1?				
	Total available	0.9	1.2				
Volume or	tape (PB)	2.6	_	4.1	5.7	7.3	

2006

4.8

1.7

2.3

8.8

0.6

0.2

0.1?

0.9?

1.7

R. Snider CDF IFC Oct. 30, 2007

CDF FY2007 procurements at Fermilab

CPU

- Shifted budget allocation from tapes into CPU
 - Tape cost dropped by 45% + lower than expected logging rate
- Added net of 1.7 THz to CPU at Fermilab (\$520k)
 (includes about \$66k from Japan)
 - Will be available in November, 2007 (much earlier delivery, deployment than past years)

Disk

 Replaced retirements in cache, expanded project disk, many new servers optimized for special uses (\$350k)

Tape drives

Added 7 LTO-3 drives for a total of 17 (\$126k)
 Tape library cost of about \$150k

R. Snider CDF IFC Oct. 30, 2007

P	0	FY	04	05	06	07	Total
CDF	Disk		25	325	105	231	686
D0	Disk		24	195	330	264	813
							TB
CDF	CPU		950	960	1632	2480	15.7
D0	CPU		1200	880	1520	3280	17.9
					core	core x 2	T Hz

Starting FY07, each core is 2x speed of older cores, more Ops/Hz

core = 2.6 G Hz

- > CDF Hardware systems: Interactive Login Pool, groupCAF, FermiGrid, and off-site CAF/Grid clusters
- > Disk:

analysis	about	300 TB
diskpool	about	120 TB
dcache	about	350 TB
production	about	50 TB

- > CDF disk (current capacity)? about 800 TB
- > distribution of the machines in terms of
- > age, capacity, warranty status, hardware problems.

year	how much	warranty
=====	=======	========
FY-03:	105 TB	be decommissioned
FY-04:	80 TB	out of warranty
FY-05:	370 TB	under warranty
FY-06:	190 TB	under warranty
FY-07:	460 TB	under warranty

- How does CDF use their disk space ?
 dcache auto-managed cache, in front of tape library
 diskpool static, physics group control
 fileservers physics group control for dataset assembly and static
 project space under user control
- > How much is tape backed dCache/sam cache? about 350 TB
- > How much is project space ?
 about 500 TB < disk in FCC, not in the portcamps >
- > What are the cache statistics? not available
- > dcache lifetime for files ? ~ weeks lifetime
- > how often are files re-cached? not available
- > What is the process wait time for pulling files from disk? depends on protocol, dccp read is slowest
- > If the cache statistics are not available, what would it take to get them. time, we are in the process of setting up age-gathering tools re-cache statistics would need to come from dcache

> CDF CPU (current capacity)

about 12,000 THz

> distribution of the machines in terms of age, capacity, warranty status. year number and type warranty

FY-03: 242 dual? to be decommissioned

FY-04: 366 dual Intel Xeon 3.0 GHz out of warranty

FY-05: 240 dual dual-core AMD Opteron 265, 1.8 GHz under warranty

FY-06: 410 dual dual-core Intel Xeon 5148 2.33 GHz under warranty

FY-07: 155 dual quad-core Intel Xeon 2.66 GHz under warranty

- > What is the pattern of usage for farm production, skimming, root tuple production, significant analysis patterns.
- > Networking:

no networking bottlenecks at this time, we expect networking infrastructure to be final for CDF (modulo a few 10Gb/s links and a switch upgrade or two)

- > Tape: How much tape does CDF and D0 have
- > and how is it distributed acrossthe robots. don't know, Angela would have to dig this out

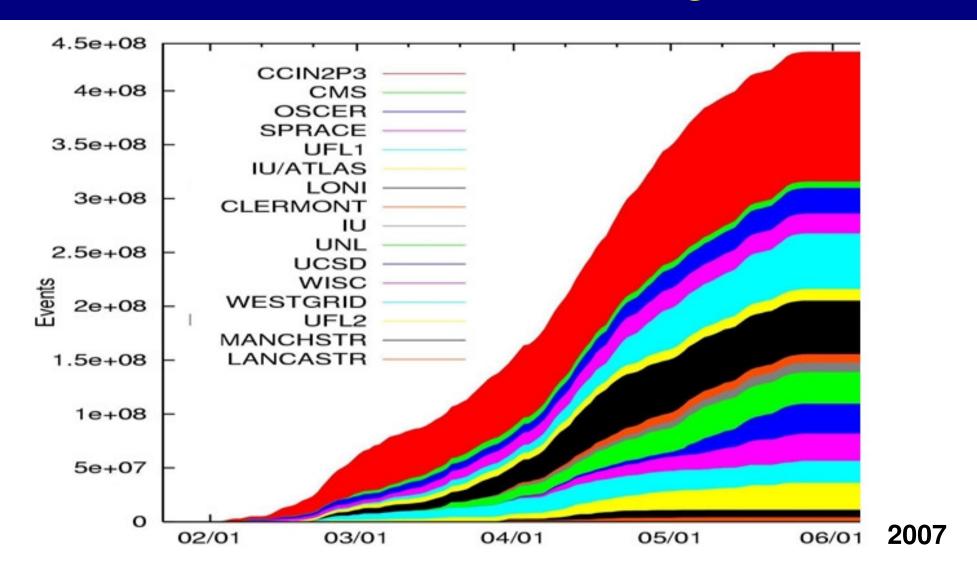
CDF

FY		06	07	80	09	10
Ave. Initial Luminosity	E30	120	220	280	280	280
Average Event Rate	Hz	100		200	200	200
Raw Data / event	KBytes	100	100	150	150	150
MBytes / sec Data - to	- Tape		17	30	30	30
CPU sec / event Reco	nstruction	2	3	5	5	5
CPU sec / event	Ntupling		6	10	10	10
Recon Data / event	KBytes	120				
User Data / event	KBytes	180				
Total number of events	10^9		5	8	11	13
CPU THz		4.8	7.9	10	11	12
Disk Pbytes		0.6	0.7	1.0	1.3	1.5
Tape Pbytes		1.5	2.6	4.1	5.7	7.3

٦		١
	l	J

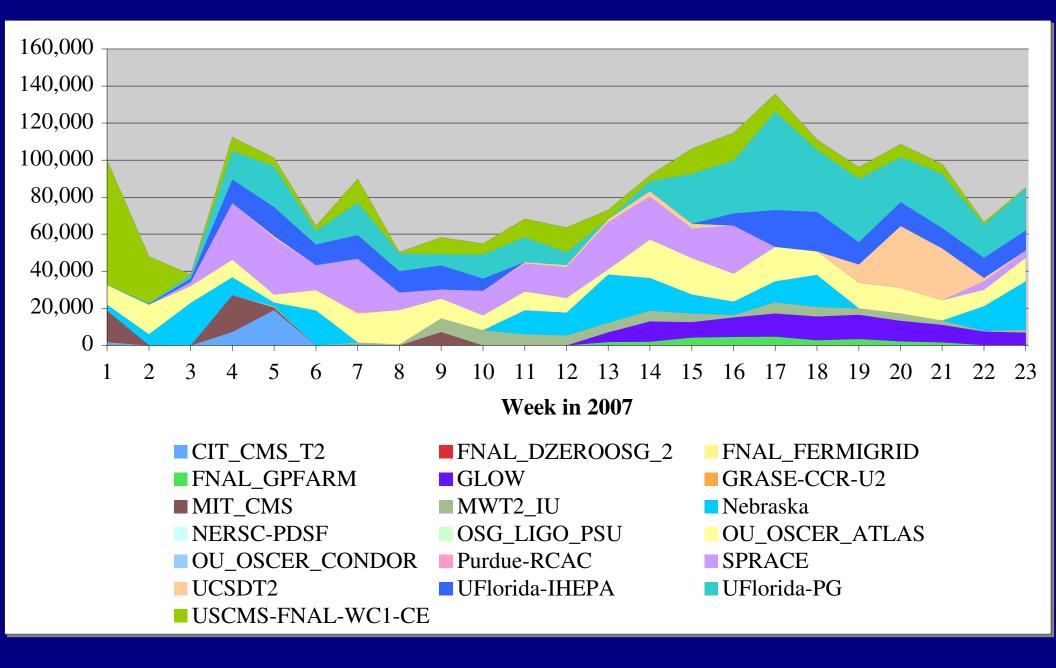
FY	06	07	80	09	10
Ave. Initial Luminosity E30	120	220	280	280	280
Average Event Rate Hz	35		100	100	100
Raw Data / event KBytes	250	250	300	300	300
MBytes / sec Data - to - Tape	9		30	30	30
CPU sec / event Reconstruction	20		46	46	46
CPU GHz sec / event Recon	50		120	120	120
Recon Data / event KBytes	80	100	100	100	100
User Data / event KBytes	40	50	50	50	50
Total number of events 10^9	2	3	4.5	6	7.5
CPU THz	4.6				12
Disk Pbytes	0.55	0.8			1.5
Tape Pbytes	2	2.x	3.5		7.3

D0 2007 Data Re-Processing on OSG


- Improved detector understanding and new algorithms require re-reprocessing of the raw detector data
- Input: 90Tb of detector data + 250 Tb in executables
- Output: 60 Tb of data in 500 CPU years
 - DZero did not have enough dedicated resources to complete the task in the target 3 months

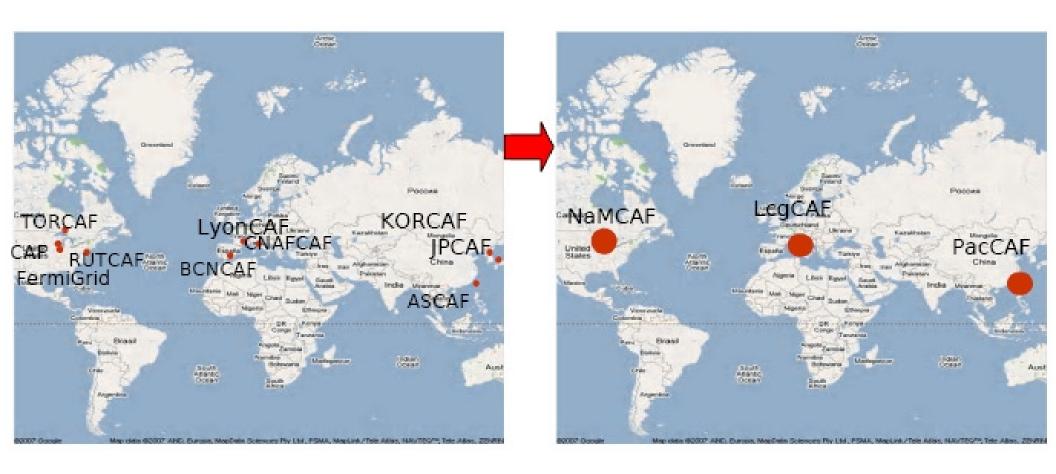
D0 requested OSG to provide 2000 CPU for 4 month.

Amber Boehnlein CHEP07 Sept, 2007


D0 2007 Data Re-Processing on OSG

- 450M collider events delivered to physicists
 - Reconstructed in fully distributed, opportunistic environment

Amber Boehnlein CHEP07 Sept, 2007


D0 OSG CPU_hour/week

Bockjoo Kim KISTI July, 2007

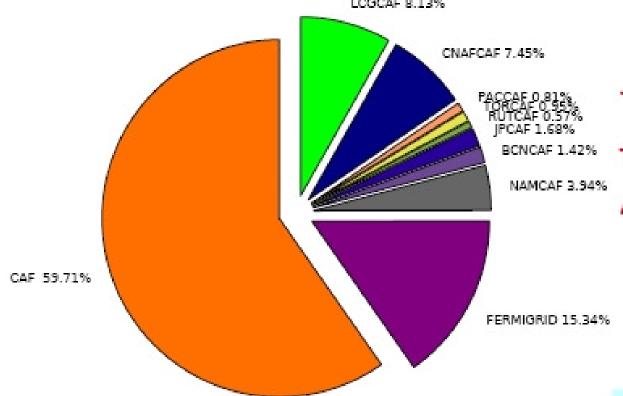
Towards GRID

Eliminate all but three grid submission portals: NAMCAF, LcgCAF, PacCAF.

Migrate all existing systems accordingly. (May keep FermigridCAF+CNAF for data access.)

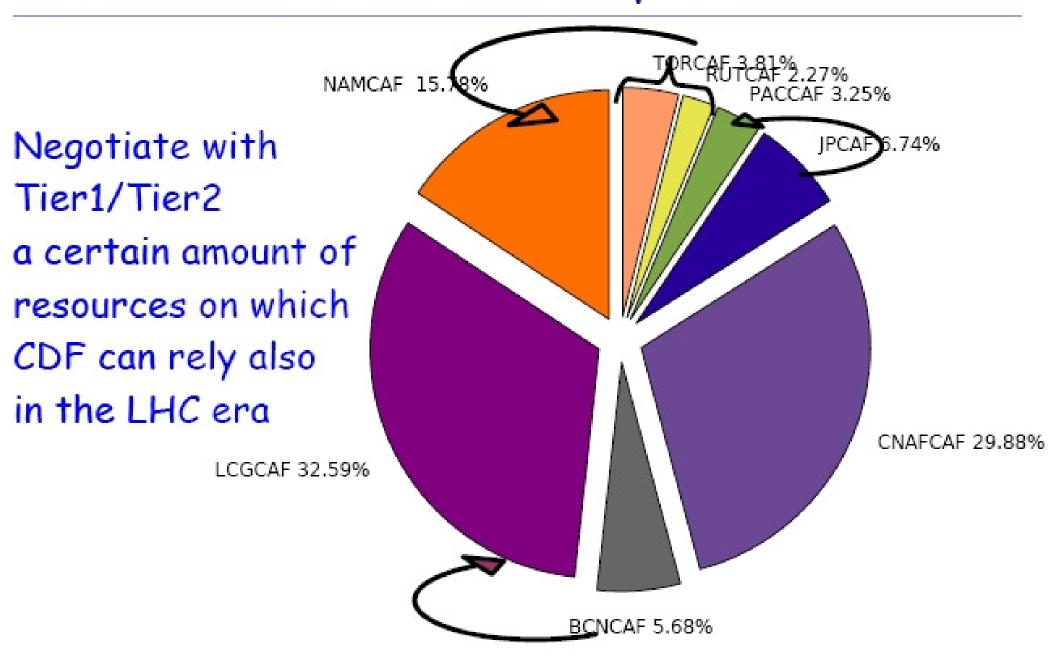
Current CDF Dedicated Resources

Current Resources [*]			
Cluster Name and Home Page	Monitoring and Direct Information Links	CPU (GHz)	Disk space (TBytes)
Original ENAL CAE	gueues, user history, analyze, ganglia, sam station, consumption	1000	370
FNAL ConderCAF (Fermilab)	gueues, user history, analyze, ganglia, sam station, consumption	2200	(shared w/CAF)
CNAFCAF (Bologna, Italy)	gueues, user history, analyze, resources, network, sam station, datasets, consumption	480	32
KORCAF (KNU, Korea)	queues, user history, ganglia, sam station, datasets, consumption	178	5.1
ASCAF (Academia Sinica, Talwan)	queues, user history, ganglia, sam station, datasets, consumption	134	3.0
SDSC CondorCAF (San Diego)	queues, user history, analyze, ganolia, sam station, datasets, consumption	380	4.0
HEXCAF (Rutgers)	gueues, cpu, sam station, datasets, consumption	100	4.0
TORCAF (Toronto CDF)	gueues, user history, analyze, ganglia, disk status, sam station, datasets, consumption	576	10
JPCAF (Tsukuba, Japan)	gueues, user history, ganglia, sam station, datasets, consumption	152	10
CANCAF (Cantabria, Spain)	queues, user history, ganglia, sam station	50	1,5
<u>MIT (Boston, USA)</u> (MC only)	queues, user history, analyze	322	3.2
	Current Totals (*):	5572	448


http://www-cdf.fnal.gov/internal/fastnavigator/fastnavigator.html (2006/Aug)

Resources Usage: All Farms

Averaged over a year: Jan07-Oct07

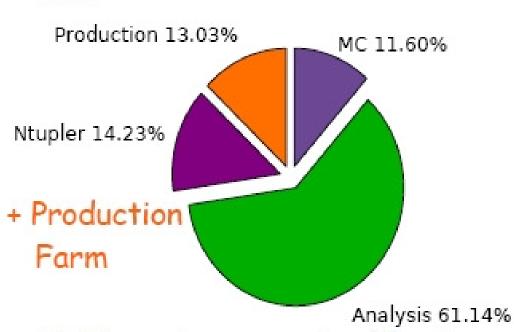

This is an "evolving pie": thanks to FermiGrid use Aug-Oct onsite share has been 50%:50%

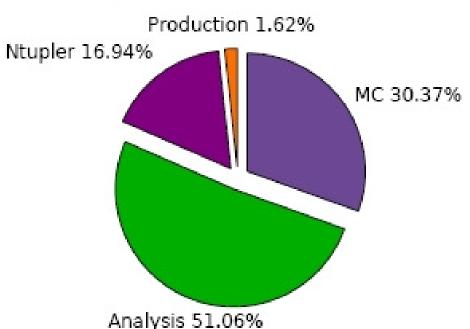
Quite soon:

- dcafs will disappear
- caf will be merged in FermiGrid

October 30th 2007 D. Lucchesi

Offsite Resources Development


On-site Resources Use


Production: Productionexe

MC: "CDFSim"

Ntupler: STN+top+Bs ntuple Analysis: all the rest

CAF FermiGrid

MC has to moved off-site
On-site resources mainly dedic

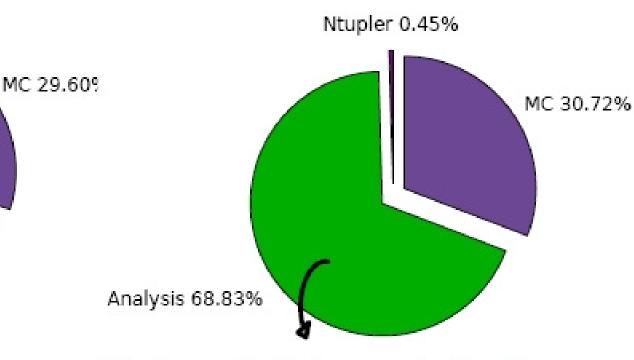
On-site resources mainly dedicated to data production &

oth 2007 D. Lucchesi

Off-site Resources Use

Production: Productionexe

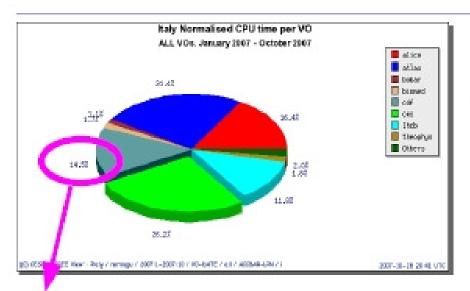
Ntupler 0.01%

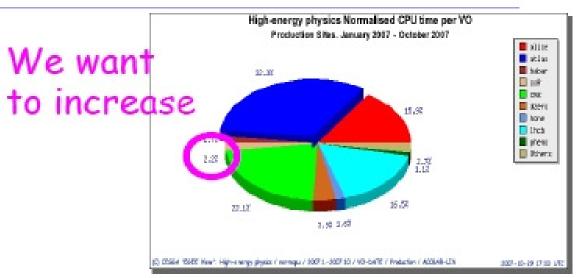

dCAF

Analysis 70.03%

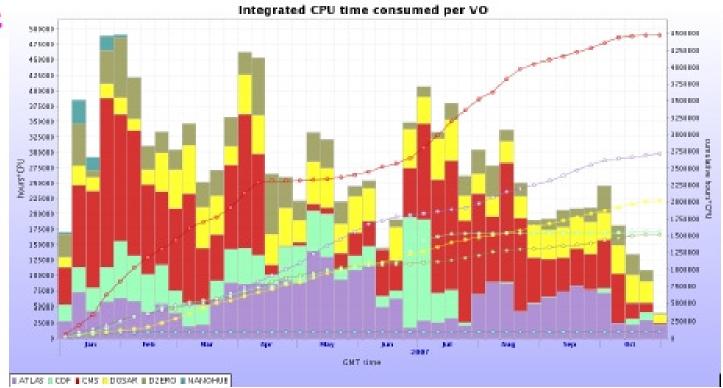
Mostly

Ntupler: STN+top+Bs ntuple MC: "CDFSim" Analysis: all the rest




Not negligible contribution

17


Pseudo-experiments of user analysis October 30th 2007 D. Lucchesi

VO Use

As big as one LHC experiment

October 30th 2007 D. Lucchesi

Future Challenges

- Higher instantaneous luminosity
 - Larger events, slower reconstruction, tracking more difficult, need more CPU per event
- Higher integrated luminosity and higher data taking rate
 - Larger data samples
 - Need more processing power
 - Need more storage
- Migration of physicists to LHC experiments
 - Human resources for operations are shrinking
- FY2010 Running has been proposed

Additional Info/slides

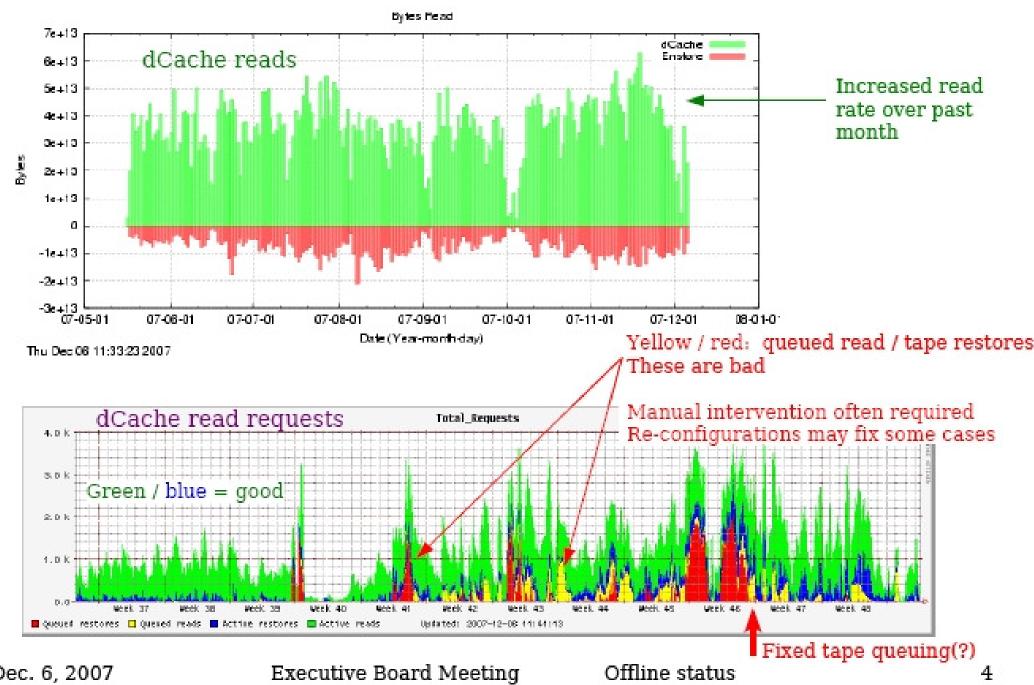
	Effort Report "FTE"		Resource Needs "FTE"	
	2005	2006	2007	2009
Operations	107	91	68	68
Computing	35	30	32	25
Algorithms	74	65	55	21
Management	14	14	10	10
Total service contributions	230	200	165	124

Conclusions

- The DØ detector is working well with high data taking efficiency
 - Currently 2.5 fb⁻¹ on tapes
 - No major technical issues to continue data collection up to and above 8 fb-1
- · Data processing is keeping pace with data collection, MC production is steady

CDF Resources available

	CY 2007	2008	2009
US FTE	222	162	127
Non US FTE	170	135	109
Total US + NonUS	392	297	236
Post Doc's	101	73	53
Students	147	102	77


Collaboration members available in units of FTE

~25% more FTE in CY07 than estimated in 2005

It takes ~100 FTE to Run CDF

Operations

- Production processing (R. Culbertson, E. Gerchtein, R. Harr, B. Jayatilaka, T. Miao, M. Vogel, A. Warburton + calibrators, ntuplers, MC producers)
 - Raw data / ntuple production proceeding on schedule
 - P13 raw data production completed, ntuples almost done
 - Infrastructure / error handling improvements over past few months
 - Processed P13 at record rates (>40 M events/day)
 - Concatenation throughput higher than in the past.
 - Working to further reduce the time for recoveries, clean-up
 - Start P14 after calibration sign-off in about 2 weeks
 - MC production
 - Problem with latest tarball (patch J) delaying P13 MC
 - Expect a resolution within days

Dec. 6, 2007 R. Snider

Installed Enstore Systems

Enstore provides distributed access to and management of data stored on tape. It provides a generic interface so experimenters can efficiently use mass storage systems as easily as if they were native file systems.

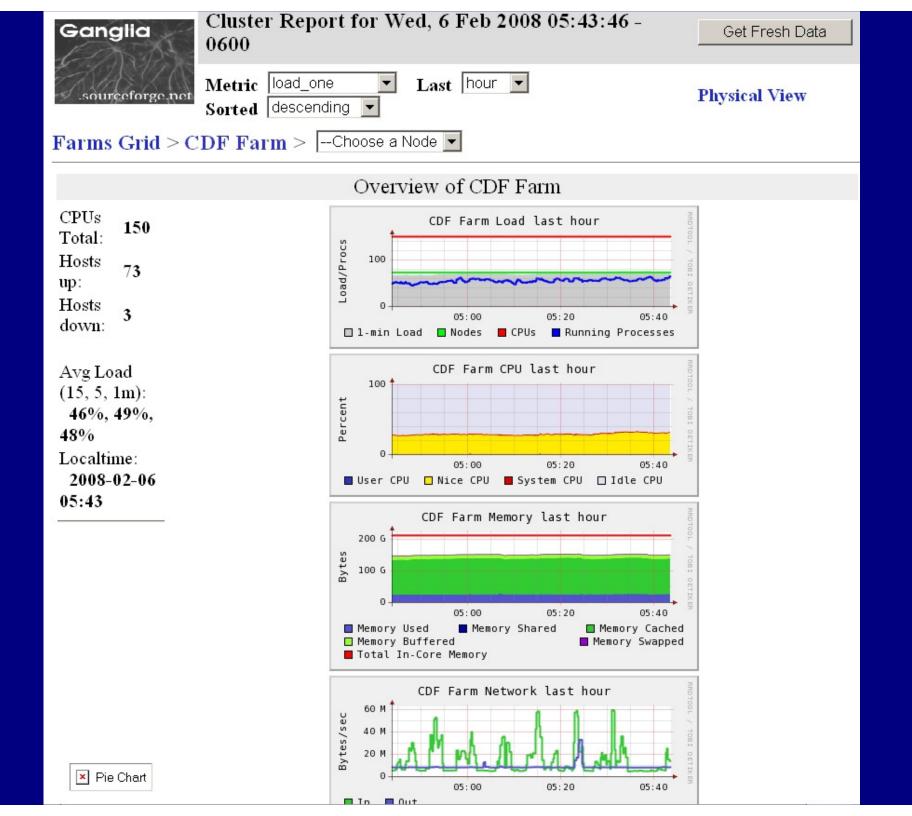
Mass Storage Production Service for General Fermilab Users						
Mass Storage Production Service for CDF Run II						
Mass Storage Production Service for DO Run II						
Mass Storage Internal						
Testing/Debugging						
Status for all Production						
Enstore systems						

Total User Data on Tape (Cdfen, D0en, Stken) :

7996.090 TB

Available ganglia pages:

Farms (CDF, D0, and GP)


CDF Offline

CDF Online (requires login)

D0 Offline

D0 Online

MINOS

FEF Faultlog

D0	CDF	FEF	GP Grid	MiniBoone
MINOS	MIPP	SCIBOONE		

Overview

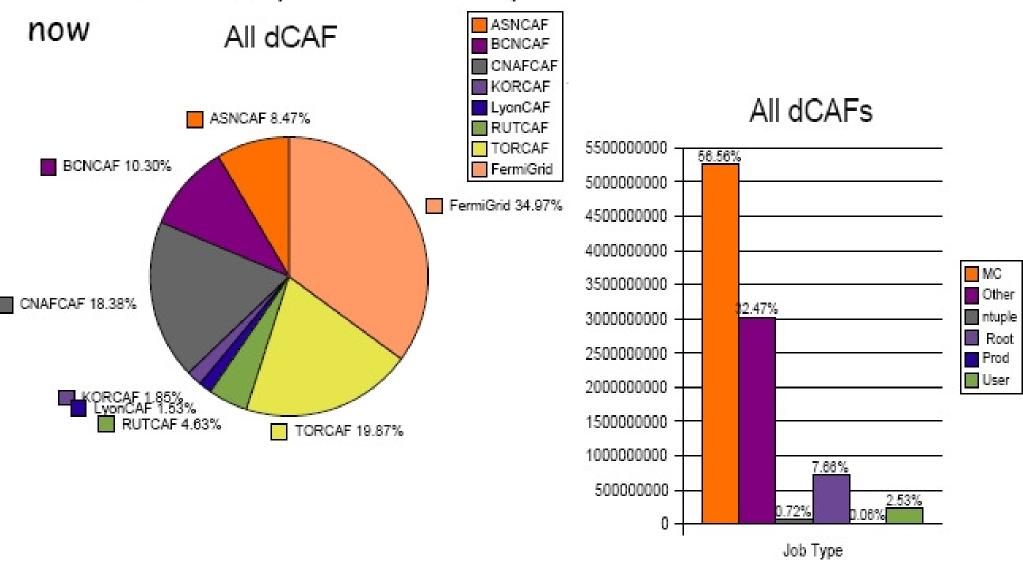
- Ganglia thinks 16 nodes are down. (3275 up) View all.
- Of those 16 machines, 0 outages have been adknowledged*. View all.
- 908 nodes are not reporting to Ganglia.
- 4199 total nodes found in SYSADMIN database.

Outages

- 783 entries in faultlog with a recorded outage duration.
- Of those, the shortest outage was for the host FND0749, with a duration of 3 minutes.
- The longest outage was for <u>DOOL95</u>, and lasted for 153 days.
- Average outage is 9 days.

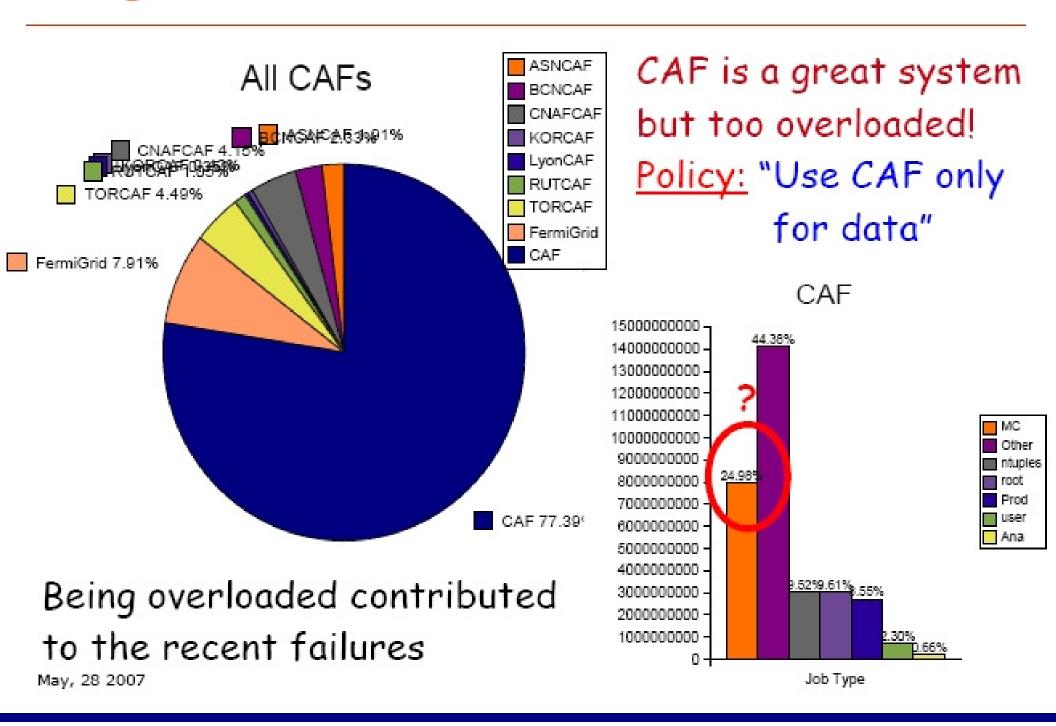
Queries

- See activity for past seven days.
- Generate a list of machines not reporting to syslogDB (slow link, takes ~2 minutes to load)
- Locate a single node: (partial names accepted)


Update Frequency

- Ganglia data updates once per minute.
- Hardware calls update once per hour.
- Cluster information updates once per day, early in the morning.

^{*} Adknowledged is defined as a faultlog entry that is more recent than the last time the machine reported to ganglia.


Usage of Dedicated Farms: all dCAFs

May, 28 2007 15

Usage of Dedicated Farms: CAF

Thanks

```
Amber's Starting List

Amber's presentation
    www-hep.uta.edu/~d0race/d0rac-wg/amber-future-budget.ppt

Andy gave me Lucchesi/Snider "Offline status and plans"
```

Andy gave me Lucchesi/Snider "Offline status and plans"
12/2007 presentation to CDF Executive Board
http://www-cdf.fnal.gov/internal/WebTalks/
http://hcp2006.phy.duke.edu/HCP2006-science.html
D0 Computing and Analysis Model by Amber
CDF Computing and Analysis Model by Pierre Savard

Jason Allen gave me 2 useful D0/CDF links: http://rexganglia1.fnal.gov http://d0om.fnal.gov/d0admin/faultlog/

Roman Lysak
enstore (tape usage at CDF/D0) + dCache
http://www-ccf.fnal.gov/enstore/
network:
fndcg0.fnal.gov/~netadmin/nwm/cgi-bin/temp/core.html
local CDF CAF and CDF farms outside Fermilab:
http://cdfcaf.fnal.gov/

Paris CDF Week Collaboration Meeting

http://lpnhe-cdf.in2p3.fr/cdf_parismeet/
Roser

Glenzinski Preparing for summer conferences
Hahn Detector Operations Status
Lucchesi Offline Operations Status
Moore Accelerator Status and Plans
Nurse Trigger and High Luminosity

http://cdorg.fnal.gov/rex/status%20report/20070416/20070416.htm

Initial luminosity & Integrated Luminosity http://www-cdfonline.fnal.gov/ops/opshelp/stores/

www-cdf.fnal.gov/internal/WebTalks/Archive/0712/071205_joint_physics/

CDF Computing Highlishts, Status, and Plans www-cdf.fnal.gov/physics/ifc/2007-10-30/donatella.pdf

CDF Computing model and budget www-cdf.fnal.gov/physics/ifc/2007-10-30/snider.pdf

CDF Monte Carlo Production on LCG via LcgCAF Dec. 2007 www.pd.infn.it/~lucchesi/talks/escience-lcgcaf.pdf

CDF Offline status and plans www-cdf.fnal.gov/internal/WebTalks/Archive/0712/071206_cdf_exec_board/